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Editorial

Robotics

Robots present a tool in which surgeons can do surgical
procedures while minimizing human error and maximizing
operative accuracy. The term ‘robot’ begins from Czech word
‘robota,’ which means forced labor or activity. In 1920, Karel
Capek, Czech play writer, wrote a science fiction play called "
Rossum's Universal Robots," where Robots were a series of
factory-manufactured artificial people that undertook
ordinary tasks for their human masters. The play premiered
on 25th of January 1921, and that is when word "robot" was
introduced to English language and to science fiction as a
whole. The first robot surgery ever was performed in 1988 to
perform neurosurgical biopsies. Since then, applicability of
robotics in surgery has progressed remarkably. Besides the
rapidly increasing needs for TKA in past years, robotic total
knee arthroplasty (TKA) has increased in number
considerably. (1)

In orthopedics, a robotic TKR is designed to decrease
mistakes associated with bone cuts and prosthesis position
and alignment. Robotic TKR has better surgical and clinical
patient outcomes than conventional TKR.[2] The first
robotic-assisted TKA was performed in 1988 in United
Kingdom.[3] Robotic TKR uses a preoperative CT scan to
create a 3D reconstruction of original knee. This patient
model is then used to calculate measurement of femoral and
tibial bone resection and select exact size of implant.[4]

The aim of TKA is to restore the mechanical axis, restore the
joint line, restore balance in flexion and extension gaps, and
restore the Q angle for perfect patella tracking. To reach
these goals, the preservation of the surrounding soft-tissue
is crucial. Destruction of the collateral ligaments, PCL, or
extensor mechanism may lead to delay in the recovery,
decrease joint stability, and decrease prosthesis life. Robotic
TKA limits saw action, which reduces iatrogenic bone and
soft-tissue damage.[5][6]

Robotic total knee arthroplasty uses certain software to
convert anatomical images into a virtual three-dimension
reconstruction of joints. The anatomy is usually obtained by
requesting pre-operative CT or intraoperative tibia and femur
mapping. The surgeons use this model to plan the perfect
bone cut, implant positioning, limb alignment, and bone
coverage based on the patient’s anatomy. The intraoperative
robotic device helps to minimize iatrogenic soft-tissue and
bony injury. [7][8]

Robotic TKR was developed to improve bone preparation
accuracy and decrease the possibility of outliers to guarantee
a longer prosthesis lifespan. Adequate restoration of the
mechanical axis in TKA is associated with a decrease in
polyethylene wear and a lower revision arthroplasty rate.[9]
[10][11]
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There are different types of robotic knee arthroplasty. Certain
types actively do all steps of tibial and femoral bone
resections, known as “fully active. Other types enable the
surgeons to do the surgery while giving feedback
intraoperatively to assist in control resection of the tibia and
femur to the pre-operative surgical plan, and this group is
known as “semi-active.” The surgeon makes the approach,
puts the retractors to protect the soft tissues.

New robotic systems such as the Navio PFS (Blue Belt
Technologies, Plymouth, MN, USA), Mako (Mako Stryker, Fort
Lauderdale, FL, USA), Rosa (Zimmer-Biomet, Warsaw,
Indiana, USA) and iBlock (OMNIlife Science, East Taunton, MA,
USA) were developed that are being used more and more.
(12) Various classification systems have been proposed to
characterize the different designs of robotic technology used in
medicine. The most well-known is the one proposed by
Schneider and Troccaz in 2001 [13].

It places robotic systems in four categories: passive, active,
interactive, and tele-operated passive systems consist of an
articulated arm that holds an instrument moved manually by
the surgeon, with the instrument's position being recognized
by the navigation system. They do not directly participate in
carrying out the procedure, which remains completely under
the surgeon's control. The OMNI® robot fits in this group.
Conventional navigation systems used for TKA are often
integrated into this type of system.

Active systems are robots that use preoperative and
intraoperative planning data to perform multiplanar surgical
manipulations autonomously (without the surgeon's
participation). The Robodoc® fits into this group. interactive
systems are robots that require an interaction between the
robot and the surgeon who constrains the robot. There are two
types of strategies in this group: semi-active and synergistic
systems.

In semi-active systems, this mechanical constraint can be
summarized as a movement without feedback to the surgeon.
Conversely, for synergistic systems, the mechanical constraints
are programmable: these newer systems are based on the
principle of haptic models (i.e. information feedback) with the
robot generating forces where the amplitude and frequency
reproduce true sensations (touch, vision). Lastly, teleoperated
systems correspond to robots that are controlled remotely by
a surgeon. The most well-known example is the DaVINCI®
robot.

Developed in 1986, Robodoc (Curexo Technology, Sacramento,
CA, USA) was the first system with ORTHODOC (robotic arm
and software) to be used for joint replacement surgery [15],
[16] (Fig. 2). It is currently sold under the name TSolution-
One (Think Surgical Inc, Fremont, CA, USA; previously Curexo
Technology). This is an autonomous active system (without
surgeon interaction) based on preoperative CT scan images
with an open platform (i.e. suitable for all implants) [14],
[17]. The iBlock robotic cutting guide (OMNIlife Science,
Raynham, MA, USA), which was previously called Praxiteles,
was approved by the Food and Drug Administration (FDA) in
2010 to assist with TKA implantation [14].

This is a motorized cutting guide that only helps the surgeon
make the femoral bone cuts based on a preoperative plan and
avoids errors associated with using a standard oscillating saw
blade. The main advantage of this system is that no CT scan is
needed. Conversely, it operates as a closed platform, thus can
only be used with one specific type of knee implant and does
not provide gap balancing. [14]

The Navio PFS, developed by Blue Belt Technologies and
currently distributed by Smith & Nephew (Watford, UK), is a
robotic reamer controlled manually by the surgeon [14]. First
approved in 2012 by the FDA for partial knee replacement, it
is now available for total joint replacement. To our knowledge,
no studies on this system have been published. This is another
semi-active system that follows the reamer's trajectory in the
navigation field. It controls the reamer's rotation speed and its
extension (or retraction) from its sleeve which allow the
resections to be done as planned. (18,19)

The Mako Robotic Arm Interactive System was initially
developed by Mako Surgical Corporation and is now sold by
Stryker Orthopaedics (Mahwah, NJ, USA) (Fig. 5). It was
approved by the FDA in 2016. This system consists of a robotic
arm that helps with TKA implantation using a haptic interface.
This semi-active robot stops the saw when it goes beyond the
cut defined in the preoperative plan; thus, it improves a
surgeon's ability to restore the knee's alignment and to protect
the soft tissues [20], [21], [22].

The Rosa Knee robot was developed by Zimmer-Biomet
(Warsaw, IN, USA) in collaboration with MedTech (Montpellier,
France) and was approved by the FDA in January 2019. This
system is an interactive robotic platform where the robotic
arm allows the cutting guides to be positioned based on
intraoperative plan obtained using navigation data. This is an
imageless system, like the Navio robot, that can be
supplemented with preoperative radiographs to create a 3D
model of the patient's knee using an atlas (X-Atlas™). This
step can be used to deform the 3D knee model using certain
prominent points determined on the patient's radiographs. The
pitfall of this technology is the modelling precision in patients
whose anatomy is outside the norms (post-traumatic
malunion, fracture fixation devices in place, major dysplasia,
etc.). Since this system is very new, no published studies exist
on it. (22) In summary, given their cost, diffusion of these new
technologies will be limited to high-volume surgical facilities,
use of these new technologies requires that we define patient-
specific surgical strategies based on big data analysis.
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